VRQ397 (CRAVKY): a novel noncompetitive V2 receptor antagonist.
نویسندگان
چکیده
Vasopressin type 2 receptor (V2R) exhibits mostly important properties for hydroosmotic equilibrium and, to a lesser extent, on vasomotricity. Drugs currently acting on this receptor are analogs of the natural neuropeptide, arginine vasopressin (AVP), and hence are competitive ligands. Peptides that reproduce specific sequences of a given receptor have lately been reported to interfere with its action, and if such molecules arise from regions remote from the binding site they would be anticipated to exhibit noncompetitive antagonism, but this has yet to be shown for V2R. Six peptides reproducing juxtamembranous regions of V2R were designed and screened; the most effective peptide, cravky (labeled VRQ397), was characterized. VRQ397 was potent (IC(50) = 0.69 +/- 0.25 nM) and fully effective in inhibiting V2R-dependent physiological function, specifically desmopressin-L-desamino-8-arginine-vasopressin (DDAVP)-induced cremasteric vasorelaxation; this physiological functional assay was utilized to avoid overlooking interference of specific signaling events. A dose-response profile revealed a noncompetitive property of VRQ397; correspondingly, VRQ397 bound specifically to V2R-expressing cells could not displace its natural ligand, AVP, but modulated AVP binding kinetics (dissociation rate). Specificity of VRQ397 was further confirmed by its inability to bind to homologous V1 and oxytocin receptors and its inefficacy to alter responses to stimulation of these receptors. VRQ397 exhibited pharmacological permissiveness on V2R-induced signals, as it inhibited DDAVP-induced PGI(2) generation but not that of cAMP or recruitment of beta-arrestin2. Consistent with in vitro and ex vivo effects as a V2R antagonist, VRQ397 displayed anticipated in vivo aquaretic efficacy. We hereby describe the discovery of a first potent noncompetitive antagonist of V2R, which exhibits functional selectivity, in line with properties of a negative allosteric modulator.
منابع مشابه
Discovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کاملDiscovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کاملModeling and interactions analysis of the novel antagonist agent flibanserin with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor as a HSDD treatment in premenopausal women
Flibanserin is a novel antagonist small molecule to treat the hypoactive sexual desire disorder (HSDD) in the premenopausal women. The present article is related to the structural and electronic properties study and docking analysis of the title compound with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor. To access these aims, the molecular structure of the said compound was optimized usin...
متن کاملNew topics in vasopressin receptors and approach to novel drugs: preface.
Arginine vasopressin (AVP) is a cyclic nonapeptide that is centrally synthesized in the hypothalamus. Vasopressin has a plethora of biological effects including not only organ regulation but also behavioral ones, which are mediated by the vasopressin-receptor subtypes V1a (vascular), V1b (pituitary) V2 (renal), and oxytocin receptors. Recently, non-peptide vasopressin receptor–selective agonist...
متن کاملSynthesis and biological evaluation of substituted desloratadines as potent arginine vasopressin V2 receptor antagonists.
Twenty-one non-peptide substituted desloratadine class compounds were synthesized as novel arginine vasopressin receptor antagonists from desloratadine via successive acylation, reduction and acylation reactions. Their structures were characterized by 1H-NMR and HRMS, their biological activity was evaluated by in vitro and in vivo studies. The in vitro binding assay and cAMP accumulation assay ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 297 4 شماره
صفحات -
تاریخ انتشار 2009